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The response of a fluid to a stationary force in the presence of membranes has been studied. Two different
geometries of membrane systems are considered: two parallel flat membranes and a nearly spherical vesicle. In
the case of a force acting between two parallel membranes, an induced velocity both between and behind the
membranes is found. Between the membranes, at large distances from the application point, the induced
velocity decays with the distance as 1 /r, more slowly than between two solid walls where it decays as 1 /r2,
and similar to the decay in an unconfined liquid. Behind the membrane interface, the flow does not have a
component normal to the membranes, and the normal component of the force does not affect the flow in this
region. In the case of spherical symmetry, expressions for the flow both inside and outside the membrane
vesicle are found in terms of spherical harmonics. We discuss the applications of our results to Brownian
motion of particles in the system and the possibility of measuring the membrane internal viscosity.
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I. INTRODUCTION

The hydrodynamic interaction of particles immersed in a
fluid plays an essential role in the physics of suspensions,
where it determines the dynamic properties on scales of the
order of the interparticle distance. In spatially confined sus-
pensions, boundary effects can play an essential role in the
particles’ interactions. There have been a number of reports
on the physics of suspensions and the particle interactions in
different conditions: particles near a wall �1�, between two
parallel walls �2,3�, and near an interface of immiscible liq-
uids �4�. In the present work, we undertake theoretical re-
search into the particle interactions in dilute suspensions in
the presence of membranes.

We consider the response of a fluid in a membrane system
to a force by solving the hydrodynamic equations. The force
is supposed to be sufficiently small that the flow caused by it
can be described by the Stokes equation. For the same rea-
son, we neglect the membrane deformations caused by the
flow when applying boundary conditions, as with gravity and
the capillary-wave problem �see �5�, Secs. 12 and 25�. We
solve the Stokes equation with a stationary point force acting
on the fluid. The response to an arbitrarily distributed force
can then be found by means of integration. The solution is
also applicable for slowly varying forces, provided their fre-
quencies are much less than the reciprocal characteristic vis-
cous relaxation time of the system. The solution of the equa-
tion with the point force can also be used to find the fluid
response to the motion of small particles driven by external
forces. Correlations in the particle Brownian motion in dilute
solutions can be studied. In the latter case the time of obser-
vation should be larger than the corresponding viscous relax-
ation time. In both cases the particle motion is required to be
sufficiently slow to ensure the smallness of the force acting
on the fluid. In the case of Brownian motion, this condition is
satisfied due to the smallness of the Langevin forces driving
the motion.

The structure of the paper is as follows. In Sec. II we
consider the general hydrodynamic equations and the bound-
ary conditions associated with membranes. Section III is

dedicated to the fluid confined by two parallel solid or mem-
brane walls. The equations for the flow in spherical geometry
systems �a nearly spherical vesicle; see below� are solved in
Sec. IV. The solution is given as the sum of spherical har-
monics. Application of the results to Brownian motion cor-
relations is presented in Sec. V. Discussion of the results is
given in Sec. VI.

II. BASIC RELATIONS

A fluid flow is characterized by a velocity field v. For
relatively slow flows, when sound excitation can be ne-
glected, and at small Reynolds numbers, when nonlinearity
of the flow is vanishingly small, the flow is governed by the
Stokes equation

��tv = ��2v − �p + f , �2.1�

where � is the fluid mass density, � is its dynamic viscosity,
p is the pressure, and f is the force density. It is determined
by Langevin forces �thermal noise� and by external forces
applied to the fluid. In the above conditions � can be treated
as constant and the incompressibility condition �v=0 is sat-
isfied. The incompressibility leads to the equation

�2p = �f �2.2�

for the pressure. Relation �2.2� implies that the pressure is
excluded from the set of dynamic variables; it has to be
considered as an auxiliary field ensuring fluid incompress-
ibility.

We investigate the fluid reaction to a stationary force F
applied at the point r0. The solution can then be used to find
the response to an arbitrarily distributed force. We should
solve the equation

��2v − �p + F��r − r0� = 0 . �2.3�

For an unbounded fluid, the solution of Eq. �2.3� is �6�
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v�0� =
1

8��
�F

x
+

�Fx�x
x3 � , �2.4�

where x=r−r0 �see Fig. 1�. Below, we analyze more sophis-
ticated cases, taking into account the presence of solid
boundaries and membranes. The expression �2.4� remains
valid near the point where the force is applied, whereas it is
essentially modified on distances of the order of and larger
than the distance from the point r0 to boundaries and/or
membranes.

It is convenient to represent the solution of the problem as

v = v�0� + u , �2.5�

where v�0� is the velocity field �2.4� induced in the un-
bounded fluid. The contribution u satisfies the homogeneous
equation

��2u − �p = 0 , �2.6�

which has to be supplemented by the boundary condition u
=−v�0� at solid walls. The boundary conditions in the pres-
ence of membranes are more complicated and require special
consideration.

A. Membranes

When we discuss membranes, we have in mind lipid bi-
layers. The physical properties of such objects have been
extensively studied, both experimentally and theoretically
�see e.g., the books �7–9� and the reviews �10–12��. In our
investigation we treat membranes as infinitely thin films i.e.,
as two-dimensional objects. This is justified provided the
characteristic scale of a problem is much larger than the
membrane thickness, a condition which is assumed to be
satisfied.

The membrane energy is related to its elasticity and shape
deformation. The former is described in terms of the mem-
brane surface tension � and the latter depends on the mem-
brane curvature. We exploit the main contribution to the cur-

vature energy, which can be written as the following surface
integral �13–15�:

F =
�

2
� dS H2. �2.7�

Here H is the membrane mean curvature, H=1 /R1+1 /R2, R1
and R2 being the local curvature radii of the membrane, and
� is the bending modulus also known as the Helfrich modu-
lus. Note that the mean curvature can be written as H=�ili
where l is a unit vector perpendicular to the membrane. To
calculate H the field l can be arbitrary extended into the third
direction �away from the membrane� since �due to the con-
dition l2=1� �ili��i

�li, where �i
�=�i− lilk�k is a special de-

rivative along the membrane.
In hydrodynamics, one has to take into account fluids at

both sides of the membrane. In order to solve the problem of
fluid motion around the membrane, one should formulate the
boundary conditions on it. We neglect the inertial effects;
then the membrane moves with the velocity of the surround-
ing fluid and the velocity field v is continuous on the mem-
brane. Next, we assume that the membrane is incompress-
ible, a condition that can be written as �i

�vi=0. Note that due
to the three-dimensional �3D� incompressibility �ivi=0 of the
flow, the membrane incompressibility means that the condi-
tion lilj�iv j =0 must be satisfied at both sides of the mem-
brane. In addition, force balance should be satisfied on the
membrane,

�i = �p�li − lk����kvi + �ivk�� , �2.8�

where �i is the membrane force �per unit area� and the floor
brackets designate a jump of the corresponding quantity on
the membrane. The right-hand side of Eq. �2.8� represents
the momentum flux to the membrane related to pressure and
the viscous stress tensor. Projecting relation �2.8�, we obtain

li�i = �p�, �ij
�� j = − �ij

�lk���� jvk + �kv j�� �2.9�

for the normal and tangential components of the force. Here
�ik

�=�ik− lilk is the projector to the membrane.
The membrane force �per unit area� can be written as �i

=−�k
�Tik

�s�, where Tik
�s� is the membrane stress tensor. There are

three contributions to the stress tensor, related to the mem-
brane surface tension, the membrane curvature, and the
membrane viscosity:

Tik
�s� = − ��ik

� + Tik
��� − ��ij

��kn
� �� jvn + �nv j� , �2.10�

where � is the membrane surface tension and � is the mem-
brane 2D shear viscosity coefficient. An explicit expression
for the bending contribution is

Tik
��� = ��−

1

2
H2�ik

� + H�i
�lk − li�k

�H�; �2.11�

it was derived in �16� �see also �17��. Calculating the deriva-
tive of Tik

�s�, one finds from Eqs. �2.10� and �2.11� that �i

=�i
���+�i

���+�i
�, where

�i
��� = ��H�H2/2 − 2K� + 	�H�li, �2.12�

�i
��� = − H�li + �i

�� , �2.13�

FIG. 1. Axial cross section of the velocity field �2.4� for the
unbounded fluid.
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�i
��� = ���ij

�	�v j − Hln�i
�vn − − 2li��n

�lj�� j
�vn� ,

�2.14�

which are the curvature, tension, and viscous forces, respec-
tively. Here K= �R1R2�−1= ���ili�2−�kli�ilk� /2 is the Gaussian
curvature and 	�=�i

��i
� is a Beltrami-Laplace operator.

Note that the force �2.12� can be obtained as a coefficient of
the bending energy �2.7� variation at an infinitesimal mem-
brane deformation �18�. The force �2.13� was discussed in
Ref. �19�.

Now, we can write the boundary conditions �2.9� explic-
itly:

��H�H2/2 − 2K� + 	�H� − H� − 2���n
�lj�� j

�vn = �p� ,
�2.15�

�i
�� + ���ij

�	�v j − Hln�i
�vn� = − �ij

�lk���� jvk + �kv j�� .
�2.16�

In order to get rid of � in the last equation, we apply the
lj
 jki�k

�= lj
 jki�k operator to both sides and obtain

�lj
 jmi��m
�	�vi − �m

��Hln��i
�vn� + lj
 jmi��m

�lk�����ivk + �kvi��
+ ljlk
 jmi�m���kvi� = 0. �2.17�

Note that this condition does not contain the membrane ri-
gidity described by the energy �2.7�. However, it is sensitive
to the membrane viscosity �.

If an infinitesimally small force F is applied to a fluid
where the membranes have equilibrium shapes, then one can
regard the shapes as unchanged when applying the boundary
conditions, since the membrane deformation is infinitesi-
mally small, too. The fact that the boundary conditions
should be applied at the exact interface position represents an
effect of higher order �see also �4��. Then looking for the
response to the force we come to a problem formulated for
fixed membrane positions. In terms of the velocity field, it is
written as livi=0, meaning that the velocity perpendicular to
the membrane is equal to zero, which also reflects the fact
that we consider stationary solutions. Let us stress that the
longitudinal velocity is generally nonzero at the membrane.
Thus the boundary conditions for the velocity field at the
membrane are livi=0, the membrane incompressibility �i

�vi
=0, and Eq. �2.17�. These three conditions substitute the no-
slip condition v=0 valid for solid walls.

We also neglect thermal fluctuations of the membranes.
This is justified by the small value of the ratio T / �2���
�where T is the temperature�, which is usually of order 10−2.

III. FLAT GEOMETRY

In this section we examine a fluid’s response to a point
force in the presence of nearly flat membranes. We assume
that there are some parallel nearly flat membranes, which
corresponds, say, to a dilute lyotropic phase. For methodical
reasons, we first present results for the fluid response to a
point force in a flat capillary, a problem that was previously
considered using a different method in Ref. �3�. We repro-
duce the result of this paper in a different way in order to

develop a method that we then use for the membrane system.
Then we pass to the case of two parallel membranes.

A. Flat capillary

Here, we consider the fluid response to a point force F in
a flat capillary where the fluid is confined between two par-
allel walls. The walls are assumed to be separated by a dis-
tance h and the force is applied at a distance w from one of
the walls. We choose a reference system where the Z axis is
perpendicular to the walls and the X-Y plane coincides with
one of them. The second wall is determined by the condition
z=h. The coordinates of the force application point can be
set to be r0= �0,0 ,w� by an appropriate shift of the origin.
Then the problem is formulated as the solution of Eq. �2.3�
supplemented by the boundary conditions v=0 on the walls
i.e., at z=0 and at z=h. This problem was solved in �3�.

To find u �see �2.5��, it is convenient to produce a partial
Fourier transformation

u���,z� =� u�k�,z�exp�ik����
d2k

�2��2 , �3.1�

and similarly for the pressure p. Here greek indices denote
the X and Y components and �= �x ,y� is a two-dimensional
radius vector. In terms of the Fourier transforms, the incom-
pressibility condition and Eq. �2.6� can be rewritten as fol-
lows:

ik�u� + �zuz = 0, �3.2�

− �k2u� + ��z
2u� − ik�p = 0, �3.3�

− �k2uz + ��z
2uz − �zp = 0. �3.4�

In order to formulate the boundary conditions for Eqs.
�3.2�–�3.4� we need the Fourier transform of the velocity
�2.4�,

vz
�0��z,k� =

e−	z−w	k

�
�Fz

4k
+

Fz	z − w	
4

−
iFk�z − w�

4k
� ,

�3.5�

v�
�0��z,k� =

1

�
�F�e−	z−w	k

2k
−

k�Fk	z − w	e−	z−w	k

4k2

−
k�Fke−	z−w	k

4k3 −
k�Fzi�z − w�e−	z−w	k

4k
� .

�3.6�

Equations �3.2�–�3.4� are ordinary differential equations with
constant coefficients. Their solution corresponding to the
boundary conditions u�0�=−v�0��0� and u�h�=−v�0��h� can
be found explicitly. Then u�x ,y ,z� can be written as a Fou-
rier integral. The final expression is quite cumbersome, and
can be found in Appendix A. However, if one is interested in
the velocity field at large distances from the force application
point, ��h, one can find the asymptotic form of v. Expand-
ing the Fourier components of the velocity in powers of kh
and leaving the lowest nonvanishing terms, one finds
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v� =
3�h − w��z − h�wz

�h3

Fkk�

k2 . �3.7�

Performing the Fourier transformation �3.1� of this expres-
sion, we obtain �see Fig. 2�

v� 

3�h − w��z − h�wz

2��h3 �F�

�2 −
2�F����

�4 � , �3.8�

in accordance with the result obtained in �3�. Note that the Z
component of velocity is of higher order in h /� than the X ,Y
components.

B. Nearly flat membranes

Here we solve a problem similar to the one in Sec. III A
with the only difference that now we consider a fluid that is
bounded by membranes instead of solid walls. We recall that
we neglect thermal fluctuations and deformations of the
membranes when applying boundary conditions.

We assume that two membranes are perpendicular to the
Z axis and have coordinates z=0 and z=h. The point force F
is assumed to be applied at the point �0,0 ,w� where 0�w
�h. The membrane incompressibility is written as �xvx
+�yvy =0, which means that �zvz=0 must be satisfied at both
sides of the membrane �as a consequence of the fluid incom-
pressibility�. The membrane immobility is written as vz=0 at
the membrane. The boundary condition �2.17� can be rewrit-
ten as

���x
2 + �y

2��curl v�z + ���z�curl v�z� = 0, �3.9�

where the fluids at both sides of the membrane are assumed
to be the same. This set of conditions is sufficient to deter-
mine the velocity field completely. We recall that the velocity
field between the membranes is decomposed as written in
�2.5�.

As previously, we pass to the partial Fourier transform
and solve Eqs. �3.2�–�3.4�. However, now we should solve
these equations for three regions: z�0, 0�z�h, and z�h.
The boundary conditions vz=0 and �zvz=0 correspond to the
flows in all three regions, while the condition �3.9� relates
the solutions on different sides of the membranes. They
should be supplemented with the condition of zero velocity
as z→ ��. The equations can be solved explicitly and then
v�� ,z� is written as a 2D Fourier integral. As above, the
expressions are cumbersome; we do not present them here
�they can be found in Appendix A�.

Let us first consider the expression for the velocity be-
tween the membranes. Again, we are interested in the
asymptotic behavior at large distances ��h or kh�1. The
main term of the expansion in kh is

u� =
1

2�
�F�

k
−

Fkk�

k3 � . �3.10�

Here, we have neglected the internal membrane viscosity �.
The approximation is correct provided ��� /�. After the
Fourier transformation we find �see Fig. 3�:

v� 

1

4��

��F�

�3 . �3.11�

We see that the velocity of the fluid confined between the
membranes decays with the distance � more slowly than for
the solid wall case. The pressure between the membranes is
the same as between the solid walls.

The flow outside the membranes is parallel to them. It can
be written explicitly �in Fourier representation� as

u�
�out� =

e−�k

2�
�F�

k
−

Fkk�

k3 � , �3.12�

FIG. 2. Velocity field �3.8� between two solid walls for z=h /2,
w=h /2.

FIG. 3. Velocity field �3.11� between the membranes.

P. VOROBEV PHYSICAL REVIEW E 77, 046306 �2008�

046306-4



where �= 	z−w	. Again, we have neglected the effects of the
internal membrane viscosity �. We see that the velocity de-
pends only on the distance from the force application point,
but not on the position of the membrane �as long as there is
a membrane between the point of observation and the point
of the force application�. We can perform a Fourier transfor-
mation with the expression �3.12�, which gives

u�
�out� =

1

4��
�F�

��

+
�F�

�2 −
F���

�2 −
2�F���

�4 +
F���

�2��

+
2�2F���

�4��
� , �3.13�

where ��=��2+�2. The pressure outside the membranes is
not affected by the force F.

It can be shown that this velocity field remains the same if
we add more parallel membranes to the system. In other
words, if one has a system of multiple parallel membranes
�lamellar lyotropic phase�, then the velocity induced by a
point force will be given by the formula �3.13� as long as this
point is separated from the application point by at least one
membrane.

We derived the expression �3.12� and hence �3.13� by
neglecting the membrane internal viscosity. Its effect at large
distances ���� /�� is of higher order in � /� than the expres-
sions that were obtained previously. Let us now consider
small distances ��� /�. The expression �3.12� should be
substituted with the following one:

u�
�out� =

e−�k

2�� + �k/2�
�F�

k
−

Fkk�

k3 � . �3.14�

One can see that it differs from �3.12� only by the denomi-
nator: � is replaced by �+�k /2. For small � we can neglect
the fluid viscosity term, and simultaneously cut down the
Fourier integrals on the lower limit to get rid of the diver-
gency. As a result we get the following answers for two
different cases:

u�
�out� 


F�

4��
ln

�

��
, � � � , �3.15�

u�
�out� 


F�

4��
ln

�

��
, � � � . �3.16�

We see that in this case the behavior of the velocity is loga-
rithmic, not powerlike as for large distances.

C. Summary

It is worth making some conclusions and compare the
results obtained above. We were mostly concerned with the
long-distance behavior of the induced velocity. We saw that
the presence of solid walls produces a damping effect on the
flow: the velocity field between two solid walls decays with
the distance faster than in an unbounded liquid. Note that
both the normal force and velocity are damped more strongly
than the tangential one, which is expressed in the fact that vz

decays faster than v� and the contribution of Fz to the flow is
negligible compared to F�.

If we compare the solid wall with the membrane case, we
first note that they both damp the normal force and velocity.
Indeed, as we saw before, the normal components of velocity
are identical for both cases. We will later see �for spherical
geometry� that this effect is quite general. The tangential
flow is, on the contrary, not affected by the membranes so
significantly as by solid walls. Comparing expressions �2.4�
and �3.11�, we see that the membranes do not change the
decay law of induced velocity, compared to an unbounded
fluid, but change its direction �see Figs. 1–3�.

IV. SPHERICAL GEOMETRY

We now turn to the case of closed membranes which are
usually called vesicles. Since both fluid and membrane are
considered to be incompressible, then a vesicle can be de-
scribed by its volume V and area S. It is convenient to write
the area as S= �4�+	�R2, where R is the radius, correspond-
ing to the sphere with volume V= 4

3�R3. We consider the
simplest case of a nearly spherical vesicle, which means that
	�1. This allows us to apply the boundary conditions di-
rectly on the surface of the sphere, neglecting the membrane
deformation and its deviation from a spherical shape. The
point force is assumed to be applied to the fluid inside the
vesicle; we need to find the velocity field both inside and
outside it. We use the same method of representation of the
solution as the sum of two parts as in �2.5�. So, as before, we
have to solve the homogeneous Stokes equation with some
boundary conditions. We expand the solution in terms of
spherical functions. According to Lamb �20� �see also �6��, a
general solution of the Stokes equation can be represented as

u = �
l=0

� �curl�r�l� + ��l +
�l + 3�

2��l + 1��2l + 3�
r2 � pl −

l

��l + 1��2l + 3�
rpl� �4.1�

for an internal problem, and as

u = �
l=0

� �curl�r�̃l� + ��̃l +
�l − 2�

2�l�1 − 2l�
r2 � p̃l −

l + 1

�l�1 − 2l�
rp̃l� �4.2�
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for an external problem. Here �l ,�l , pl and �̃l ,�̃l , p̃l are har-
monic functions,

�l = rl�
m

�lmYlm��,�� ,

�̃l = r−l−1�
m

�̃lmYlm��,�� , �4.3�

and analogously for �l , pl and �̃l , p̃l. Note that pl or p̃l rep-
resents the expansion of the pressure.

A. Spherical vessel

As in the previous section we first solve the Stokes equa-
tion for the solid wall case. We consider a fluid in a spherical
vessel with solid walls and examine a flow induced by the
point force F applied inside the vessel. Then the expansion
�4.1� can be used to describe the flow. One can check that the
boundary condition v=0 on the solid wall means that for a
spherical vessel the relations

ur = − vr
�0�, �4.4�

r�rur = − r�rvr
�0�, �4.5�

r · curl u = − r · curl v�0� �4.6�

must be satisfied at the vessel walls, that is, at r=R, where R
is the vessel radius. The boundary conditions �4.4�–�4.6� can
be rewritten in terms of the functions �l ,�l , pl since at r
=R

ur = �
l
� lR

2��2l + 3�
pl +

l

R
�l� , �4.7�

r�rur = �
l
� l�l + 1�R

2��2l + 3�
pl +

l�l − 1�
R

�l� , �4.8�

r · curl u = �
l

l�l + 1��l. �4.9�

Let us choose the spherical coordinates with the polar axis
directed along the line connecting the center of the sphere
and the force application point. Let a denote the distance
between them, and �0 the angle between the polar axis and
the force vector. Longitude will be counted from the force
vector.

To use the relations �4.4�–�4.6� one has to expand the
boundary values of v�0� in terms of surface spherical func-
tions,

vr
�0� = � Xl, r�rvr

�0� = � Yl, �curl v�0��r = � Zl,

�4.10�

at r=R. Explicit expressions for these functions can be found
in Appendix B. Using relations �4.4�–�4.6� we can express
the functions �l , �l, and pl in terms of Xl, Yl, and Zl:

�l =
R

2l
� r

R
�l

�Yl − �l + 1�Xl� , �4.11�

pl =
��2l + 3�

lR
� r

R
�l

��l − 1�Xl − Yl� , �4.12�

�l = −
1

l�l + 1�
� r

R
�l

Zl. �4.13�

Substituting these expressions into Eq. �4.1� we find u and
then the velocity v inside the vessel in accordance with Eq.
�2.4�.

B. Nearly spherical vesicle

Let us now turn to the vesicle. We consider the general
case when the fluids inside and outside the vesicle are differ-
ent. Let �1 and �2 denote the fluid viscosities inside and
outside the vesicle, respectively. If the force F is applied
inside the vesicle, the latter has to be moving as a whole with
the Stokes velocity F / �6��2R� where R is the vesicle radius
�see, for example, �5��. The term has to be added to the
expression �4.1� to ensure the right momentum flux outside
the vesicle.

Let us formulate the boundary conditions, required to
solve the Stokes equation. As previously, we neglect the
membrane shape perturbations and consider the membrane to
be incompressible. For the nearly spherical vesicle we obtain

�rvr = 0, vr =
�F,n�

6��2R

=
F�cos � cos �0 + sin � sin �0 cos ��

6��2R
, �4.14�

where the first condition represents the membrane incom-
pressibility and the second condition means that the vesicle
moves with the Stokes velocity F / �6��2R� �n denotes the
unit vector in the direction of r�. Next, we obtain from Eq.
�2.17�

���r�curl v�r� = − ��r
2�curl v�r − 4�r−1�r�curl v�r.

�4.15�

The right-hand side of this expression contains the velocity
on the membrane. One can use either the internal or external
fluid velocity since they coincide on the membrane. The last
boundary condition is

��curl v�r� = 0, �4.16�

which is simply a consequence of a tangential velocity con-
tinuity.

Let us now find the flow caused by the point force acting
inside the vesicle. Equation �4.5� remains the same and Eq.
�4.4� should be replaced by the following one:

ur = − vr
�0� +

�F,n�
6��2R

, �4.17�

in accordance with �4.14�. Together with �4.15� and �4.16�,
these equations constitute the full set of boundary conditions
for the nearly spherical vesicle enabling one to find the ve-
locity field. We first find pl and �l. We conclude that these
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functions are the same for the vesicle and for the solid wall
case in the inner region, apart from the addition to � of

�0 =
�F,r�

6��2R
, �4.18�

which corresponds to the fluid inside the vesicle moving as a
whole with the velocity F / �6��2R�. In the outer region all
�l and pl are zero except for the terms

�1 =
R2

24��2

�F,r�
r3 , �4.19�

p1 =
�F,r�
4�r3 . �4.20�

These terms produce the flow outside the vesicle, which is
the same as if the vesicle were a solid sphere moving through
the fluid,

v =
1

8��2

F + �F,n�n
r

+
R2

24��2

F − 3�F,n�n
r3 . �4.21�

This result was expected since the boundary conditions cor-
responding to it are the same for the membrane and the solid
sphere.

It only remains to find �l inside and outside the vesicle.
The boundary conditions lead to a set of two equations,
which can be found in Appendix B. Solving them, we find

�l
out =

F sin �0

4�

�2l + 1�
l�l + 1�Nl

al

rl+1 Pl
1 sin � , �4.22�

�l
in = −

F sin �0�l + 2�
4�l�l + 1�

��2 − �1 + ��/R��l − 1��
Nl

alrl

R2l+1 Pl
1 sin � ,

�4.23�

where Pl are Legandre polynomials of order l, Pl
1 are their

associated polynomials of the first order, and Nl= ��1�l−1�
+�2�l+2�+ �� /R��l−1��l+2��. We see that the internal mem-
brane viscosity does not affect the first harmonic. The corre-
sponding contribution to the velocity is the most slowly de-
caying one at large distances from the vesicle. It is

�1
out =

Fa sin �0 sin � sin �

8��2r2 , �4.24�

or in vector notation

�1
out = −

�r · �F � a��
8��2r3 . �4.25�

This expression does not contain the viscosity of the fluid
inside the vesicle. Finally we have

v = curl�r�� =
1

8��2

†r � �F � a�‡
r3 =

R3

r3 �� � r� ,

� =
�a � F�
8��2R3 , �4.26�

the expected result. The surface of the vesicle is rotating as a
whole, so the internal viscosity does not play a role, and the
flow outside is the same as for a solid sphere rotating with
the angular velocity �.

Note that, if we look at the limit �→�, we find that all
harmonics except for the first one vanish, while the latter
remains the same �together with expression �4.26�� as is seen
from �4.22�. The translational part �4.21� also does not
change. This result could have been predicted, since the
above limit corresponds to a solid weightless spherical shell
which can only move and rotate.

As was shown before, fluid flow both inside and outside
the vesicle can be represented as a sum of two contributions.
The first one is due to the motion of the vesicle as a whole
and is given by expression �4.21�. The second one represents
“rotational” motion and corresponds to �4.22� combined with
�4.2� and can be written as a sum of spherical harmonics. At
large distances r�a the former is stronger, since it decays
more slowly, i.e., as 1 /r.

C. Summary

We now can compare the results obtained for the plane
and spherical geometries. From expression �4.22� one can
see that if the force is acting in the z direction �normal to the
spherical surface� all the spherical harmonics vanish �except
for the one responsible for translation�. This situation corre-
sponds to the force acting in the normal direction for the
plane membrane case. We also note that �again, apart from
the translational part� the flow outside the vesicle does not
have a radial part. In other words, there is only a tangential
�to the membrane surface� flow, again as for the plane mem-
branes. There is the further analogy that the pressure inside
the vesicle is the same as in a spherical vessel, and the pres-
sure outside is constant.

V. BROWNIAN MOTION

Having solved the hydrodynamic equations, we now ana-
lyze the results obtained. In this section we will show how
our solutions can be applied to the investigation of the par-
ticle displacement correlations in their Brownian motion.
This is achieved by applying the fluctuation-dissipation theo-
rem to a system of particles immersed in a fluid.

A. Fluctuation-dissipation theorem

The hydrodynamic interaction of particles immersed in a
fluid can be tested by investigating their Brownian motion.
Let Xa be the positions of the particles �enumerated by the
index a�. The Brownian motion can be characterized in terms
of the correlation functions Xa,i�t�Xb,j�0�� where the angular
brackets designate averaging over the realizations and the
indices i and j designate components of the vectors. Experi-
mentally, it is convenient to measure the correlation func-
tions �Xa,i�t�−Xa,i�0���Xb,j�t�−Xb,j�0���, expressed in terms
of the particle displacements from their initial positions.
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According to the fluctuation-dissipation theorem �see,
e.g., Ref. �21��,

Xa,iXb,j�� =
2T

�
Im �ab,ij��� , �5.1�

where T is the fluid temperature,

Xa,i�t�Xb,j�0�� =� d�

2�
e−i�tXa,iXb,j��, �5.2�

and �ab,ij��� is the linear susceptibility of the system. It de-
termines the displacement of particle a in the i direction
provided the external force Fb,j�t� is applied to particle b. In
the Fourier representation

Xa,i�� = �
b,j

�ab,ij���Fb,j��� . �5.3�

For the particle velocities Va, this relation �5.3� can be re-
written as follows:

Va,i�� = �
b,j

ab,ij���Fb,j��� , �5.4�

where =−i��. Then it follows from the relation �5.1� that

�Xa,i�t� − Xa,i�0���Xb,j�t� − Xb,j�0���

=� d�

2�
�1 − cos��t��

4T

�2 Re ab,ij��� . �5.5�

Under the action of stationary forces, the particles move with
constant velocities in the fluid. Therefore in the limit �→0
the matrix ab,ij��� tends to a constant, whereas the matrix
�ab,ij��� has a simple pole at �=0. The susceptibility
ab,ij��� remains approximately constant for frequencies less
than � / ��L2� where L is the interparticle distance. Therefore
if t is much larger than �L2 /� then ab,ij��� can be substi-
tuted by ab,ij��=0� in Eq. �5.5�. Then, calculating the inte-
gral over �, one finds

�Xa,i�t� − Xa,i�0���Xb,j�t� − Xb,j�0��� = 2Ttab,ij�� = 0� ,

�5.6�

where we have taken into account that ab,ij is real at �=0.
Thus in this limit the Brownian correlations are reduced to
the susceptibilities of the particles to the stationary forces
applied to them.

B. Role of boundaries and membranes

We now can explicitly write the expressions for the sus-
ceptibilities. We start form the plane solid wall case. From
�5.4� and �3.8� we find

ab,� = −
3�h − za��h − zb�zazb

2��h3 ���

�2 −
2���

�4 � . �5.7�

The components ab,�z and ab,zz are of higher order in h /�
and can be neglected in our approximation. Note that the
susceptibility is symmetric with respect to indices a and b as
well as � and , as it should be.

We use expression �5.7� to explicitly calculate the dis-
placement correlation function �5.6�. We choose the X axis to
be directed along the line connecting the particles projections
to the x ,y plane. In this case one finds

�Xa,x�t� − Xa,x�0���Xb,x�t� − Xb,x�0���

= Tt
3�h − za��h − zb�zazb

2��h3

1

�2 , �5.8�

�Xa,y�t� − Xa,y�0���Xb,y�t� − Xb,y�0���

= − Tt
3�h − za��h − zb�zazb

2��h3

1

�2 , �5.9�

�Xa,x�t� − Xa,x�0���Xb,y�t� − Xb,y�0���

= �Xa,y�t� − Xa,y�0���Xb,x�t� − Xb,x�0��� = 0. �5.10�

We see that the longitudinal motion of particles is correlated
in the same direction, but the transverse one �normal to the
line connecting them in the x ,y plane� in the opposite. This
fact is in agreement with the reported experimental results
�2�. We see that these two correlations are equal in value.

Let us turn to the membrane wall case. We first consider
the situation when both particles are within the inner region
and at a large distance from each other. We find

ab,� =
1

4��

���

�3 , �5.11�

�Xa,x�t� − Xa,x�0���Xb,x�t� − Xb,x�0��� =
Tt

2��

1

�
,

�5.12�

�Xa,y�t� − Xa,y�0���Xb,y�t� − Xb,y�0��� = 0, �5.13�

�Xa,x�t� − Xa,x�0���Xb,y�t� − Xb,y�0���

= �Xa,y�t� − Xa,y�0���Xb,x�t� − Xb,x�0��� = 0. �5.14�

We see that in this case the particle motion is correlated only
in the longitudinal direction. These expressions are also true
for the case of two particles near one membrane, provided
the distance between them is much larger than their distance
from the membrane.

If the particles are at different sides of the membrane we
first assume that ��h and ���. Then we can expand ex-
pression �3.13� in powers of � /� to obtain

ab,� =
1

4��
����

�3 +
�

�
���

�
−

2���

�3 �� , �5.15�

which gives

�Xa,x�t� − Xa,x�0���Xb,x�t� − Xb,x�0��� =
Tt

2��
�1

�
+

�

�2� ,

�5.16�
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�Xa,y�t� − Xa,y�0���Xb,y�t� − Xb,y�0��� =
Tt

2��

�

�2 ,

�5.17�

�Xa,x�t� − Xa,x�0���Xb,y�t� − Xb,y�0���

= �Xa,y�t� − Xa,y�0���Xb,x�t� − Xb,x�0��� = 0. �5.18�

We note that both longitudinal and transverse correlations are
present but the latter is weaker.

The above expressions do not contain any membrane
characteristics �Helfrich modulus, viscosity� and hence can-
not be used to find them. However, they can be used to
establish whether or not the membrane is liquid and isotro-
pic.

If the particles are at a small �in the x ,y plane� distance
from each other on different sides of the membrane one
should use expressions �3.15� and �3.16�,

ab,� =
��

4��
ln

�

��
, � � � �5.19�

ab,� =
��

4��
ln

�

��
, � � � . �5.20�

The corresponding correlations are

�Xa,x�t� − Xa,x�0���Xb,x�t� − Xb,x�0��� �5.21�

=�Xa,y�t� − Xa,y�0���Xb,y�t� − Xb,y�0��� =
Tt

2��
log

����
��

,

�5.22�

�Xa,x�t� − Xa,x�0���Xb,y�t� − Xb,y�0���

= �Xa,y�t� − Xa,y�0���Xb,x�t� − Xb,x�0��� = 0. �5.23�

We note that these relations contain the membrane viscosity
explicitly, hence allowing one to measure it experimentally.

Let us now consider the spherical vesicle case. According
to what was said at the end of Sec. IV B for large interpar-
ticle distances only the translational part of the velocity, and
hence the susceptibility, is essential, so one cannot use cor-
relations to obtain even qualitative information about the
membrane. The susceptibility corresponding to this is

ab,� =
1

8��2

�� + n�n

r
. �5.24�

We neglected the second term in �4.21� since r�R. We re-
call that one particle is supposed to be inside and the other
outside the vesicle. The notations for the vesicle are different
from those for plane geometry: r denotes the distance from
the “outer” particle to the center of the vesicle, not the “in-
ner” particle, and n is a unit vector in this direction.

At distances r�a both parts of the flow are significant
and one can use correlations to find the membrane internal
viscosity, since it enters all harmonics �except the first one�
of the rotational part.

VI. CONCLUSION

We derived expressions for the flows induced by station-
ary point forces in a fluid in the presence of membranes. The
results obtained can have various applications. Particle dis-
placement correlations can be calculated or the reaction of
the fluid to the motion of a small particle immersed in it can
be found.

We investigated the simplest cases of flat membranes and
a nearly spherical vesicle. A system of nearly parallel mem-
branes is realized in so-called lamellar phases of lipid solu-
tions. Our consideration might be applicable to dilute lamel-
lar solutions. Correlating and anticorrelating effects in the
particle motion were found, which were in agreement with
experimental reports for such systems �2�. As we saw in Sec.
III, the presence of liquid membranes instead of solid walls
affects the fluid flow in a qualitatively different way. It was
shown that membranes do not suppress the flow significantly
compared to solid walls. The induced velocity, and hence the
particle interaction law between two parallel membranes, de-
cays with the distance as 1 /r which is the same as in an
unconfined liquid. The decay law between two solid walls
obeys 1 /r2. It was found that there is no correlation in the
motion perpendicular to the connecting line for particles be-
tween two parallel membranes. In the direction of this line,
the correlation is positive and is the same as for particles in
unconfined liquids.

Expressions for fluid flow both inside and outside the
nearly spherical vesicle were obtained. It was found that both
translational and rotational motion of the vesicle are induced.
The former corresponds to the motion of the vesicle as the
whole. The velocity of this motion is determined in order to
equalize the force acting inside the vesicle. It appeared that
the flow induced by this motion is the same as if the solid
sphere were moving. The rotational part is given as a sum of
spherical harmonics, and all harmonics except for the first
one are significantly dependent on the membrane internal
viscosity. The first harmonic represents the pure rotation of
the vesicle. It does not depend on the membrane internal
viscosity since the membrane is rotating as a whole. The
higher harmonics contain the membrane viscosity and vanish
when it approaches infinity, which corresponds to the solid
membrane state. There is, consequently, a qualitative differ-
ence in the fluid flows �and hence the particle interaction
law� around vesicles with solid and liquid membranes. In the
former case �apart from translation� only the first spherical
harmonic is induced, while in the latter case an infinite num-
ber of harmonics are present.

To summarize, we can say that the results obtained in this
paper show both qualitative and quantitative differences be-
tween the induced velocity behavior laws in the presence of
solid boundaries and membrane interfaces. It was found that
in the presence of solid boundaries the flow is significantly
suppressed. The effect of a membrane on the flow is more
complicated: it damps the normal flow and the influence of
the normal force component, which is similar to the solid
boundary effect, but does not significantly influence the tan-
gential flow, since the membrane is considered to be liquid.
Membrane internal viscosity effects on the flow were found,
which can be significant despite the small thickness of the
membrane �22�.
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All the above suggest that results obtained in this paper
can be potentially used in experimental investigations of
membrane systems. The state of the membrane �liquid or
solid� and the membrane internal viscosity can be tested ex-
perimentally. By measuring the particle displacement corre-
lations or by observing the flow induced by the driven par-
ticle, one can experimentally establish the state of the
membrane and measure its viscosity.
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APPENDIX A: FLAT GEOMETRY

The solution of Eqs. �3.2�–�3.4� can be written as

vx =
ikxz

2k�
f1�k�ekz −

ikxz

2k�
f2�k�e−kz + f3�k�ekz + f4�k�e−kz,

�A1�

vy =
ikyz

2k�
f1�k�ekz −

ikyz

2k�
f2�k�e−kz + f5�k�ekz + f6�k�e−kz,

�A2�

vz =
z

2�
f1�k�ekz +

z

2�
f2�k�e−kz + f7�k�ekz + f8�k�e−kz,

�A3�

p = f1�k�ekz + f2�k�e−kz, �A4�

with the additional conditions

kxf3 + kyf5 =
i

2�
f1 + ikf7, �A5�

kxf4 + kyf6 =
i

2�
f2 − ikf8, �A6�

originating from the incompressibility equation. All the f co-
efficients depend on the wave vector and are to be found
from the boundary conditions. This solution is valid for both
solid and membrane wall cases. However, the values of the
coefficients will be different. Using �3.5� and �3.6� one finds
for the solid walls the following cumbersome expressions:

f1 =
1

2�k2h2 − sinh2 kh��Fz� �1 − e−2kh�sinh wk

2
+ kh sinh wk −

kw�1 − e−2kh�ewk

2
− k2hwe−wk� + + iF�k�� �1 − e−2kh�sinh wk

2k

− h sinh wk +
�1 − e−2kh�wewk

2
− khwe−wk�� , �A7�

f2 =
Fze

wk

2
−

iF�k�ewk

2k
+

1

2�k2h2 − sinh2 kh��Fz� �e2kh − 1�sinh wk

2
+ kh sinh wk − k2hwewk + − �i +

kw�1 − e2kh�e−wk

2
�

+ iF�k�� �1 − e2kh�sinh wk

2k
+ h sinh wk +

�1 − e2kh�we−wk

2
+ khwewk�� , �A8�

f7 =
1

4�
�Fzwe−wk −

Fz sinh wk

k
+

iF�k�we−wk

k
+

iF�k� sinh wk

k2 +
1

�k2h2 − sinh2 kh��Fz�w sinh wk

2
− h sinh wk

−
sinh 2kh sinh wk

2k
+

w sinh�2kh − wk�
2

+ khw cosh wk� + iF�k�� sinh wk sinh2 kh

k2 − hw sinh wk −
w cosh wk

2k

+
w cosh�2kh − wk�

2k
��� , �A9�

f8 =
1

4�
�Fz cosh wk

k
−

iF�k� sinh wk

k2 −
1

�k2h2 − sinh2 kh��Fz�h sinh wk +
sinh 2kh sinh wk

2k
−

w sinh wk

2
−

w sinh�2kh − wk�
2

− khw cosh wk� + iF�k��w cosh wk

2k
−

sinh wk sinh2 kh

k2 + hw sinh wk −
w cosh�2kh − wk�

2k
��� , �A10�
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f3 =
Fxe

−kh sinh wk

2�k sinh kh
+

kx

2�
� iFzwe−wk

2k
−

F�k�we−wk

2k2 −
F�k�e−kh sinh wk

2k3 sinh kh
+

1

�k2h2 − sinh2 kh��Fz� ihw sinh wk

2
−

ih2 sinh wk

2

−
iw sinh�wk − kh�sinh kh

2k
� + F�k��h sinh wk

2k2 −
h2 cosh kh sinh wk

2k sinh kh
+

hw cosh wk

2k
−

w cosh�kh − wk�sinh kh

2k2 ��� ,

�A11�

f4 =
Fx sinh�kh − wk�

2�k sinh kh
+

kx

2�
�F�k� sinh�wk − kh�

2k3 sinh kh
+

1

�k2h2 − sinh2 kh��Fz� ih2 sinh wk

2
−

ihw sinh wk

2

+
iw sinh�wk − kh�sinh kh

2k
� − F�k��h sinh wk

2k2 −
h2 cosh kh sinh wk

2k sinh kh
+

hw cosh wk

2k
−

w cosh�kh − wk�sinh kh

2k2 ��� .

�A12�

Expressions for f5 and f6 can be obtained from those for f3
and f4, respectively, by substitution of the x index with y.

In the case of membrane walls one also has to find the
flow behind the membranes. Expressions �A1�–�A3� can be
used here as well; however, since the liquid behind the mem-
brane is considered to be unbounded, one has to exclude the
growing exponents from all expressions; for example, for the
z�0 region one finds

u1z =
z

2�
g1ekz + g7ekz, �A13�

u1x =
ikxz

2k�
g1ekz + g3ekz, �A14�

u1y =
ikyz

2k�
g1ekz + g5ekz, �A15�

p1 = f1ekz. �A16�

Using the boundary conditions we discover that f1, f2, f7,
and f8, and hence vz and p, for the liquid confined between
the membranes are the same as for the flow between solid
walls.

The expressions for the rest of the coefficients are

f3 =
kx

2�
� iFzwe−wk

2k
−

F�k�we−wk

2k2 −
F�k� sinh wk

2k3

+
1

�k2h2 − sinh2 kh��Fz� ihw sinh wk

2
−

ih2 sinh wk

2

−
iw sinh�wk − kh�sinh kh

2k
� + F�k��h sinh wk

2k2

+
hw cosh wk

2k
−

w sinh wk

4k2 −
w sinh�2kh − wk�

4k2

−
sinh 2kh sinh wk

4k3 ��� , �A17�

f4 =
kx

2�
�F�k� cosh wk

2k3 +
1

�k2h2 − sinh2 kh��Fz� ih2 sinh wk

2
−

ihw sinh wk

2
+

iw sinh�wk − kh�sinh kh

2k
� − F�k��w sinh wk

4k2

+
w sinh 2kh − wk

4k2 +
sinh 2kh sinh wk

4k3 −
h sinh wk

2k2 −
hw cosh wk

2k
��� . �A18�

f5 and f6 can be obtained as was mentioned above.

APPENDIX B: SPHERICAL GEOMETRY

Explicit expressions for the boundary conditions �4.10�
are

Xl =
F cos �0

8��R
� l�l + 1�

2l − 1
� a

R
�l−1

−
l�l + 1�
2l + 3

� a

R
�l+1�Pl

+
F sin �0

8��R
cos �� �l + 1�

2l − 1
� a

R
�l−1

−
�l + 3�
2l + 3

� a

R
�l+1�Pl

1,

�B1�
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Yl =
F cos �0

8��R
� l�l + 1��l + 2�

2l + 31
� a

R
�l+1

−
l2�l + 1�
2l − 1

� a

R
�l−1�Pl

+
F sin �0

8��R
cos �� �l + 2��l + 3�

2l + 3
� a

R
�l+1

−
l�l + 1�
2l − 1

� a

R
�l−1�Pl

1, �B2�

Zl =
F sin �0

4��R
sin �� a

R
�l

Pl
1, �B3�

where Pl and Pl
1 are Legendre polynomials defined in Sec.

IV B.
The boundary conditions �4.15� and �4.16� lead to the

following set of equations for the spherical vesicle:

F sin �0

4��R
sin �� a

R
�l

Pl
1 + l�l + 1��R

r
�l

�l
in = l�l + 1�� r

R
�l+1

�l
out,

�B4�

F sin �0�l + 2�
4��1R

sin �� a

R
�l

Pl
1 − �1l�l + 1��l − 1��R

r
�l

�l
in

− �2l�l + 1��l + 2�� r

R
�l+1

�l
out

= �
l�l − 1��l + 1��l + 2�

R
� r

R
�l+1

�l
out, �B5�

where a is the distance between the center of the vesicle and
the application point.
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